
Advances in targeting LDL cholesterol: PCSK9 inhibitors and beyond

Maya Safarova a,1, Tia Bimal b,1, Daniel E. Soffer c, Benjamin Hirsh d,e, Michael D. Shapiro f,
Guy Mintz d,e, Agnes Cha g, Eugenia Gianos b,d,*

a Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI USA
b Northwell, New Hyde Park, NY, Cardiovascular Institute, Lenox Hill Hospital, USA
c Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA USA
d Department of Cardiology, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, Hempstead, NY, USA
e Northwell, New Hyde Park, NY, Cardiovascular Institute, Sandra Atlas Bass Heart Hospital, USA
f Center for the Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
g Northwell/Vivo Health Pharmacy, Ambulatory Pharmacy Services, Lake Success, NY, USA

A R T I C L E I N F O

Keywords:
Lipid-lowering
Advanced therapies
Non-statins
Precision lipidology

A B S T R A C T

There is a direct relationship between the duration and level of exposure to low density lipoprotein cholesterol
(LDL-C) levels over one’s lifespan and cardiovascular events. Early treatment to lower elevated LDL-C is crucial
for better outcomes with multiple therapies currently available to reduce atherogenic lipoproteins. Statins
remain the foundation of LDL-C lowering therapy as one of the most cost-effective drugs to reduce atherosclerotic
events (ASCVD) and mortality. Nonetheless, LDL-driven goal attainment remains suboptimal globally, high-
lighting a considerable need for non-statin therapies to address residual risk related to statin intolerance, non-
adherence, and inherited lipoprotein disorders. LDL-C lowering interventions beyond statins include ezeti-
mibe, PCSK9 monoclonal antibodies, inclisiran and bempedoic acid with specific guideline recommendations as
to when to consider each. For patients with homozygous familial hypercholesterolemia requiring more advanced
therapy, lomitapide and evinacumab are available, providing mechanisms that are not LDL receptor dependent.
Lipoprotein apheresis remains an effective option for clinical familial hypercholesterolemia as well as elevated
lipoprotein (a). There are investigational therapies being explored to add to our current armamentarium
including CETP inhibitors, a third-generation PCSK9 inhibitor (small recombinant fusion protein oral PCSK9
inhibitor) and gene editing which aims to directly restore or disrupt genes of interest at the DNA level. This
article is a brief review of the pharmacotherapy options beyond statins for lowering LDL-C and their impact on
ASCVD risk reduction. Our primary aim is to guide physicians on the role these therapies play in achieving
appropriate LDL-C goals, with an algorithm of when to consider each based on efficacy, safety and outcomes.

1. Introduction

Over the last several decades, clinical trials examining statin and
non-statin therapies consistently demonstrate significant outcomes
benefit from a reduction in atherogenic lipoproteins [1]. In fact, there is
a direct relationship between the duration and level of exposure to low
density lipoprotein cholesterol (LDL-C) levels over one’s lifespan and
cardiovascular events [2]. The earlier patients receive treatment for
elevated LDL-C, the better the outcomes. In addition, patients with

higher baseline risk for atherosclerotic cardiovascular disease (ASCVD)
derive the greatest benefit from LDL-C lowering proportional to the
degree of LDL-C reduction from baseline.
Since their Food and Drug Administration (FDA) approval, statin

therapy has become one of the most impactful interventions to reduce
ASCVD events and mortality [1]. As the foundation of therapy for
ASCVD risk reduction, they are inexpensive and highly effective,
providing cost-effective therapy in the primary and secondary preven-
tion setting. While mean age-adjusted total cholesterol levels decreased
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in the US population from 197 mg/dL in 2007–2008 to 189 mg/dL in
2017–2018 for men and women, cholesterol screening rates remain
suboptimal. As such, only 66 % of Hispanic adults, 75 % of Asian adults,
71 % of Black adults, and 74 % of White adults have been reported to
receive lipid screening over the past decade [3]. In men and women at
an equivalent ASCVD risk, statin therapy was shown to have similar
effectiveness for the prevention of major vascular events [4]. However,
national trends demonstrate low uptake of lipid-lowering therapies,
especially in women [3]. Further, across the globe, LDL-driven goal
attainment remains suboptimal [5], introducing a significant need for
non-statin therapies to address residual ASCVD risk related to statin
intolerance, non-adherence, and heritable lipid disorders. Approxi-
mately 50 % of patients with established ASCVD have inadequate LDL-C
reduction and poor adherence rates even as soon as 12 months after
initiation of therapy [6]. Novel treatments may further extend individ-
ualized care to patients with varying needs and phenotypes.
The following is a brief review of the pharmacotherapy options for

LDL-lowering and evidence for ASCVD risk reduction. It is meant to be a
resource that supports the role of therapy based upon evidence of effi-
cacy, safety, tolerability, convenience, and patient acceptance. The is-
sues of cost and value are beyond the scope of this review and differ
based upon region and individual characteristics, but obviously are
important determinants of utilization. Clinicians are encouraged to
follow accepted guidelines with an individualized approach, and advo-
cate for broader access when guideline-based therapies are not autho-
rized or affordable for their patients.

2. Atherogenic lipoproteins and the need for advanced therapies

It is well-established that apolipoprotein B (apoB)-containing lipo-
proteins are the building blocks for atherosclerosis. They include chy-
lomicrons, very low-density lipoproteins (VLDL), intermediate density
lipoproteins (IDL), LDL, lipoprotein(a) (Lp(a)), and remnant particles
[7]. With a few exceptions, even at low concentrations, the predominant
circulating atherogenic lipoprotein is LDL [8]. Therefore, the predomi-
nant goal in the management of ASCVD is to reduce available circulating
LDL and its incorporation into developing atheroma, thus enabling the
stabilization and remodeling processes mediated by high-density lipo-
protein (HDL). LDL-C represents the cholesterol content in LDL and its
concentration in serum correlates directly with the progression of
atherosclerotic lesions. As a result, treatment strategies have been
directed toward lowering LDL-C [1]. Despite the consistent benefit seen
with LDL-C lowering treatments and observational, epidemiologic, ge-
netic, and randomized controlled data supporting lower levels for longer
durations, there continues to be residual ASCVD risk in treated in-
dividuals attributed, in part, to incomplete reduction in LDL-C,
non-HDL-C, apoB, triglyceride-rich lipoproteins (TRL), small dense
LDL (sdLDL), and Lp(a) [9].
ApoB is a large protein containing >4500 amino acids in its primary

structure. Thus, atherogenic lipoproteins can accommodate only a single
apoB particle on their surface. The lipoproteins vary based upon their
origin (hepatic or intestinal), lipid content (cholesterol to triglyceride
ratio), exchangeable apolipoproteins (apo) (e.g., apoCIII, apoCII, apoE,
apoA), and in the case of Lp(a), the presence of apo(a) and oxidized
phospholipid content. Shared circulatory residence enables lipoprotein
interaction with each other, subsequent remodeling (especially medi-
ated by cholesteryl ester transfer protein [CETP]) by lipid and protein
exchange. This results in a range of atherogenic potential (Lp(a) > TRL-
remnant > LDL), and lipid content within each class, which affects the
ability to reproducibly measure and assess atherogenic potential with a
single measurement. Therefore, the total atherogenic lipoprotein burden
is not completely captured by the measurement of LDL-C alone.
Consideration of additional atherogenic particles and assessment of
apoB and non-HDL-C [10] is worthwhile when choosing therapies for
cardiovascular risk reduction. The number of LDL and VLDL particles in
plasma is a function of the rate at which they are produced and the rate

at which they are removed and cleared from plasma. VLDL secretion
rates are increased in patients with familial combined hyperlipidemia
and hypertriglyceridemia, abdominal obesity, insulin resistance, and
diabetes [11]. The rate at which VLDL particles can be cleared is limited
and VLDL apoB particle numbers increase, as a result apoB provides
incremental improvement in risk prediction in these patients.
LDL-C lowering can be achieved by reducing available cholesterol in

LDL, or by enhancing clearance of LDL from circulation (Fig. 1) [12].
Dietary modification (decrease in saturated fat and increase in fiber
content) [13], regular physical activity [14], often weight reduction,
attention to optimal sleep and stress management are first line treat-
ments for ASCVD risk reduction [15]. In addition to the ability to lower
LDL-C, there are additional cardiovascular benefits that healthy diet and
lifestyle choices can provide. Pharmacologic therapeutics can impact
lipid and lipoprotein synthesis and clearance. Clearance of the LDL
particles via LDL-receptor upregulation is the common mechanistic
pathway for statins, cholesterol absorption inhibitors (ezetimibe), bile
acid sequestrants, proprotein convertase subtilisin-kexin 9 inhibitors
(PCSK9i), and the cholesterol synthesis inhibitor, bempedoic acid.

3. Need for accurate lab measurement

Another source of residual risk conveyed by atherogenic lipoproteins
may be attributed to the incomplete measurement of total atherogenic
burden by LDL-C measurement alone. As described in the 2018 Multi-
society Guideline on the Management of Blood Cholesterol, apoB and
non-HDL-C are stronger indicators of atherogenicity than LDL-C alone
[16]. When LDL-C< 100 mg/dL and/or when triglycerides are elevated,
the most commonly used LDL-C calculation (Friedewald formula) un-
derestimates atherogenic risk compared to other measurement tech-
niques due to the errors in estimating VLDL-C. When triglycerides are in
the range 150 to 400 mg/dL or 150–800 mg/dL, the Martin-Hopkins
method and NIH equation 2, respectively, provide greater accuracy
than Friedewald equation [17]. Appropriate use and reporting of lipid
test results should improve their utility and precision in the management
of individuals at risk for ASCVD events [18].

4. Statin therapy as first line

Since the sentinel work by Akira Endo [19] and subsequent FDA
approval of lovastatin (Mevacor®) in 1987, there have been numerous
randomized clinical trials (RCTs) reproducibly demonstrating
improvement in ASCVD prognosis and outcomes in individuals treated
with statins compared to placebo. Efficacy and safety of more intensive
lowering of LDL-C was comprehensively reported in the meta-analyses
conducted by the Cholesterol Treatment Trialists’ Collaboration (CTT).
Based on these data, for every 38.7 mg/dL lowering in LDL-C there is a
22 % reduction in major adverse event (MACE) rate, including coronary
events, strokes, need for coronary revascularization and vascular mor-
tality, as well as a reduction in all-cause mortality by ~10 % [1,20].
Further reductions in LDL-C produce additional reductions in the inci-
dence of major vascular events in people of all ages, including those over
the age of 75. Statin therapy is effective in a wide range of populations,
including women and men, in people with diabetes, and in those at
lower risk for ASCVD. Supplemental Table 1 summarizes expected
LDL-C lowering effects for each statin enabling every dose of statin to be
characterized as either high, moderate, or low intensity therapy
[21–62].

5. LDL-C: lower for longer

Mendelian randomization is an effective approach to evaluate causal
relationship between a biological factor and a disease of interest. Using
data from the genome-wide association studies (GWAS) in the Global
Lipids Genetics Consortium, a 1-standard deviation increase in the LDL-
C levels mediated by the HMGCR, NPC1L1, and PCSK9 genes was
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associated with 1.2 years lower lifespan [63]. In a series of
meta-analyses, Ference et al. [64] used 6 lipid-related genes (SORT1,
PCSK9, LDLR, HMGCR, ABCG8, APOE) to demonstrate consistent 3-fold
risk reduction in coronary events per 38.7 mg/dL lower LDL-C, as
compared to a statin started later in life. Early prolonged exposure to
lower LDL-C due to inherited predisposition is associated with a
reduction in the lifetime risk of ASCVD. This supports the notion that
earlier intervention with LDL-lowering therapy may result in better
ASCVD outcomes [64]. Further, observational data suggest safety of
early long-term use of statin therapy initiated in childhood in patients
with familial hypercholesterolemia (FH) [65,66]. The PESA (Progres-
sion of Early Subclinical Atherosclerosis) trial with 3471 individuals
(baseline age 40–55 years; 36 % female) who underwent structured
assessment of peripheral subclinical atherosclerosis using 3D-vascular
ultrasound, revealed the following findings: (i) atherosclerosis regres-
sion was possible in early stages of the disease, as regression was
observed in 8 % with baseline disease, (ii) higher LDL-C showed the
strongest association with disease progression in individuals free of
disease at enrollment, (iii) with increasing age for every 10-unit increase
in LDL-C and blood pressure there was an attenuation in the odds of
subclinical atherosclerosis progression at 6 years, highlighting their
marked impact in younger individuals and emphasizing importance of
early detection and control [67].
This has led to the contemporary refrain summarizing the LDL-C

approach as “lower for longer, and earlier, is better for ASCVD man-
agement.” Further, to test this practice in the clinical trial setting, the
PRECAD (Prevent Coronary Artery Disease) trial will randomize young
volunteers, aged 20–39 with atherosclerosis, to either receive aggressive
therapy with LDL <70 mg/dL or undergo watchful waiting for assess-
ment of total atherosclerosis burden as a surrogate of ASCVD [68]. To

capture the transition to symptomatic disease, the
PESA-CNIC-SANTANDER study which is an ongoing prospective cohort
study examining imaging, biological, and behavioral parameters of early
subclinical atherosclerosis, will assess natural course of atherosclerotic
and related trains until at least 2029 [69].

6. Safety of very low LDL levels

PCSK9 inhibitor trials provided the first opportunity to observe the
benefits and safety of achieving very low LDL-C levels with pharmaco-
therapy. In addition, the safety of low LDL-C levels complements the
findings observed from individuals with genetically determined low
levels of the PCSK9 protein and LDL-C levels. Loss-of-function mutations
in PCSK9 are associated with markedly low LDL-C, reduced risk of
coronary heart disease, and no measurable adverse effects [70–72].
Similarly, persons with loss-of-function mutations in ANGPTL3 exhibit
decreased plasma lipid levels and a significantly reduced prevalence of
ASCVD without any apparent adverse effects [73,74]. Using a
phenome-wide association (PheWAS) approach, no association was
found between LDL-C-related variants in PCSK9, APOB, and LDLR and
non-lipid-related phenotypes including diabetes, neurocognitive disor-
ders, or cataracts, suggesting that major off-target side effects would be
less likely with pharmacologic manipulation of the examined genes
[75].
Interventional data with the open label extension of the FOURIER

(Further Cardiovascular Outcomes Research with PCSK9 Inhibition in
Subjects with Elevated Risk) trial included 6635 patients with a median
follow-up of 4.8 years and a median LDL-C level of 32 mg/dL [76]. In
addition to evolocumab, patients were on maximally tolerated high in-
tensity statin therapy with or without ezetimibe. There was an early and

Fig. 1. Current therapeutic armamentarium of approved lipid-modifying agents. Schematic diagram of the site and mechanism of action, affecting various steps in
the LDL synthesis and clearance pathway. With permission and modifications from Safarova et al. [12]. Abbreviations: LDL-C: low density lipoprotein cholesterol;
NPC1L1: Niemann-Pick C1-Like 1; LDL-R: low density lipoprotein receptor; ACL: ATP citrate lyase inhibitor; PCSK9: Proprotein convertase subtilisin/kexin type 9;
siRNA: Small interfering ribonucleic acid; ANGPTL3: Angiopoietin-like 3; ApoB: Apolipoprotein B; FFA: free fatty acids, CETP cholesteryl ester transfer protein; MTP
Microsomal Triglyceride Transfer Protein; HDL high-density lipoprotein.
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consistent separation of the survival curves with the risk of the primary
and secondary efficacy endpoint being 18 % and 21 % lower per each
38.7 mg/dL of LDL-C, respectively. Individuals with LDL-C below 10
mg/dL demonstrated the lowest risk of adverse cardiovascular
outcomes.
The ODYSSEY OUTCOMES trial examined the ASCVD outcomes in

acute coronary syndrome (ACS) patients treated with alirocumab or
placebo, with the PCSK9 inhibitor dose adjusted to achieve LDL-C 25–50
mg/dL. This RCT showed both efficacy and safety at very low LDL levels,
albeit for a short duration because those with LDL-C < 15 mg/dL on
alirocumab were converted to placebo in a blinded fashion [77]. Those
with the LDL-C levels below 70 mg/dL on average demonstrated greater
incremental clinical benefit with monoclonal antibodies (mAb) to
PCSK9 with higher Lp(a) levels [78–80], suggesting benefit from a
further personalized approach to lipid-lowering therapies. Analysis of
the IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy
International Trial) with data on almost 15,281 individuals showed a 21
% reduction in the risk of cardiovascular death, major coronary events,
or stroke in patients achieving an LDL-C level less than 30 mg/dL with
ezetimibe as compared with 70 mg/dL or greater [81].
No causal relationship between statins and cancer, cataracts, cogni-

tive dysfunction, peripheral neuropathy, erectile dysfunction, or
tendonitis has been observed to date [82]. Given prior concerns that low
LDL-C alters cognitive function, to examine the potential effect on
neurocognitive implications the EBBINGHAUS study assessed subjects
treated with evolocumab or placebo with a battery of well-validated,
comprehensive cognitive tests amongst patients who had achieved
very low LDL-C levels <85 mg/dL with high intensity statin and PCSK9
inhibitors with or without ezetimibe, including those with LDL <25
mg/dL. No significant difference in cognitive performance scores was
reported in this analysis [83]. In FOURIER-OLE (open-label extension)
in patients with LDL-C as low as <20 mg/dL, including LDL-C < 10
mg/dL there was no significant safety concerns over a follow-up of 8.6
years [76]. The legacy effect was observed in those achieving very low
LDL-C levels demonstrating the lowest cumulative incidence of the
composite cardiovascular death, myocardial infarction, stroke, unstable
angina, or coronary revascularization very early in treatment. There
were further reductions in cardiovascular events when compared with
delayed treatment initiation [84]. Data on safety of the newer
lipid-modifying therapeutics continued beyond 8 years is not known,
therefore, ongoing surveillance is necessary to further inform providers
and clinicians.
This paradigm prompted a 2023 Scientific Statement from the

American Heart Association, which reviewed the data for LDL lowering
and brain function and largely refuted concerns about heightened risk
for cognitive impairment, dementia, and hemorrhagic stroke [85]. The
brain produces its own supply of cholesterol via astrocytes and oligo-
dentrocytes and therefore is not dependent on the transport of the
cholesterol across the blood brain barrier. Although the Stroke Preven-
tion by Aggressive Reduction of Cholesterol Levels (SPARCL) trial
showed an increase in hemorrhagic stroke in patients taking atorvastatin
80 mg oral daily, a subsequent secondary analysis of this data identified
that hemorrhagic stroke risk was highest in statin-treated patients with
existing cerebral small vessel disease [86]. The Treat Stroke to Target
(TST) trial showed that patients who had LDL-C < 70 mg/dL had better
outcomes such as lower primary composite outcome of ischemic stroke,
myocardial infarction, new symptoms leading to urgent coronary or
carotid revascularization, or death from cardiovascular causes [87].

7. When to consider intensification of lipid-modifying strategies

While individual clinicians and patients may consider any order and
combination of cholesterol-lowering pharmacotherapies, the 2018
cholesterol guidelines and the 2022 ACC ECDP (Expert Consensus De-
cision Pathway) suggest an evidence-based practical approach [16,21].
Given the weight of the recommendations, payors tend to follow this

advice, which means that use of high-cost therapies beyond statins and
ezetimibe has limited access for most patients except in prescribed cir-
cumstances. Ultimately, these guiding documents also stress the
importance of shared clinician-patient decision-making that prioritizes
evidence of benefit, safety, tolerability, potency (outlined in Supple-
mental Table 2) [16], ease of use, affordability, availability, and patient
acceptance. With few exceptions, pharmacologic LDL-C lowering should
begin with statins, followed by ezetimibe, PCSK9 mAb, then bempedoic
acid. Inclisiran is an alternative to the PCSK9 mAb when available and
preferred. Use of non-statin and non-ezetimibe therapeutics is limited to
approved circumstances. Bile acid sequestrants are rarely used because
of modest potency, poor tolerability, and lack of cardiovascular out-
comes benefit in patients already treated with a statin. Treatment with
lomitapide and evinacumab is reserved for individuals with homozygous
FH.
Addition of non-statin pharmacotherapy is determined by specific

LDL-C thresholds. The highest risk conditions have the lowest LDL-C
threshold, promoting intensive treatment for those with the highest
burden of atherosclerosis most likely to benefit from the additional
pharmacotherapy. Fig. 2 provides a phenotype-driven approach to
shared-decision making adapted and modified from the 2022 ACC
ECDP, using recently published data. The current FDA approved in-
dications for bempedoic acid include adults with heterozygous FH, pa-
tients with existing ASCVD, and since March 22, 2024, individuals at
high risk for ASCVD who are unable to take recommended statin ther-
apy, including those not taking a statin [88].

8. Beyond statin therapies

8.1. Ezetimibe (FDA approval: 2002)

Ezetimibe reduces cholesterol absorption, by inhibiting Niemann-
Pick C1-like 1 (NPC1L1) at the brush border of the small intestine [21,
70]. This mechanism reduces chylomicron-cholesterol delivery to the
liver, thereby reducing hepatic cholesterol levels, resulting in upregu-
lation of LDL-receptors, and effectively increasing cholesterol clearance
from the blood stream. It also effects hepato-biliary sterol transport, but
its enterocyte effect seems to predominate the impact on serum LDL-C.
Ezetimibe is available in a fixed dose of 10 mg oral daily. It reduces
LDL-C by a mean 18 % as monotherapy and by 25 % when added to
statins [21,70], though individual results may vary considerably.
Moreover, it can modestly reduce hs-CRP levels when used in combi-
nation with statins [89,90]. The IMPROVE IT trial, which studied eze-
timibe in conjunction with a moderate-intensity statin in patients who
had recent (within ten days) acute coronary syndrome, showed a 2 %
decrease in ASCVD over a 7-year follow-up period [22]. The Study of
Heart and Renal Protection (SHARP study) showed the safety of
combining ezetimibe and statins in patients with chronic kidney disease
[21,91]. Evidence regarding the primary prevention of ASCVD with
ezetimibe is summarized in Suppl Table 3 [91–96]. However,
hard-outcome placebo-controlled data remain limited in the primary
prevention setting. The common side effects include upper respiratory
tract infection (4 %) and sinusitis and arthralgia (3 %). In rare cases, the
addition of ezetimibe to statin therapy required discontinuation due to
adverse events, such as myalgias, rhabdomyolysis, transaminase in-
creases, and gastrointestinal adverse events [97].

8.2. Bile acid sequestrants (1973)

Bile acid sequestrants like colesevelam, cholestyramine, and coles-
tipol are non-absorbed polymers which absorbs bile acids in the in-
testines and impede their reabsorption. As the bile acid pool is
decreased, the hepatic enzyme 7-alpha-hydroxylase is up-regulated
which can increase the conversion of cholesterol to bile acids,
depleting intra-hepatic cholesterol. This results in increased transcrip-
tion and activity of the cholesterol biosynthetic enzyme HMG-CoA
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reductase and greater numbers of hepatic LDL-receptors with increased
clearance of LDL from the blood. Colesevelam, cholestyramine, and
colestipol are indicated for reduction of LDL-C in patients with primary
dyslipidemia. Colesevelam may be used for glycemic control in adults
with type 2 diabetes, as it enhances glucose-stimulated glucagon-like
peptide 1, and to decrease LDL-C in boys and post-menarchal girls with
heterozygous FH. Bile resins should be avoided in individuals with
baseline TG above 250 mg/dL since they may raise the TG levels via
decreased activation of the farnesoid X receptor (FXR receptor). In in-
dividuals with thyrotoxicosis cholestyramine decreases reabsorption of
thyroid hormone from enterohepatic circulation. The NHLBI’s Lipid
Research Clinic’s (LRC) Coronary Primary Prevention Trial with chole-
styramine in middle-aged men lowered LDL-C by 11 %, resulting in a 19
% reduction in nonfatal and a 24 % reduction in fatal myocardial
infarction with no change in all-cause mortality [28]. The LDL-C
lowering with cholestyramine is dose-dependent with 12 gs of the
resin associated with an 18 % reduction in LDL-C. The effects of cole-
sevelam and colestipol on cardiovascular outcomes have not been
determined. This class is the only cholesterol-lowering class considered
to be safe during pregnancy. Dosing of bile acid sequestrants can be
challenging as it requires separation from other medications and the
typical side effects include bloating, constipation, and hyper-
triglyceridemia. The main side effect of all three bile acid sequestrants is
constipation and dyspepsia. These symptoms can be mitigated if
cholestyramine is completely suspended in liquid several hours before
intake as well as if diet is enriched with high fiber consumption. To
reduce drug-drug interactions, it is recommended to administer other
medications one hour before or four hours after taking cholestyramine.

8.3. Bempedoic acid (2020)

Bempedoic acid is a prodrug that requires conversion by the hepatic-
specific very-long-chain acyl-CoA synthetase 1 (ASCVL1) into its active
metabolite [34]. Thus, it is not activated outside the hepatocyte andmay
have a significant advantage for patients with statin intolerance. It in-
hibits cholesterol biosynthesis within the same pathway targeted by
statins. Upregulation of LDL-receptor density results in increased
clearance of LDL from the bloodstream. Bempedoic acid comes in a fixed
dose of 180 mg, which is administered orally once daily. It has a half-life
of 9 h, and it offers additional mean 15 %− 25 % LDL lowering. A sig-
nificant lowering in hs-CRP (average 33 %) has been observed. The
combination of bempedoic acid and ezetimibe lowers LDL-C by an
average of 35 % [98]. Bempedoic acid has been studied in individuals

with statin intolerance, ASCVD, heterozygous FH on statin therapy, and
in those not achieving adequate response to lipid-lowering therapy, with
cardiovascular outcomes proportional to the degree of LDL-C lowering.
Main side effects include hyperuricemia (26 %) and gout (11 %) in pa-
tients with prior gout history. Bempedoic acid treatment in the phase 3
trials was associated with small but reversible low-grade increases in
serum creatinine, blood urea nitrogen, and uric acid in some individuals.
No adjustments in bempedoic acid dosage are currently recommended
for patients with renal impairment, except for end-stage renal disease
due to lack of data. Small decreases in eGFR are secondary to
drug-induced reduction in tubular secretion of creatinine due to inhi-
bition of the tubular transporter of type 2 organic acids (OAT2) in the
proximal tubular cells. Numerically a higher incidence of cholelithiasis
in patients treated with bempedoic acid was observed in the CLEAR
OUTCOMES trial [34].

8.4. PCSK9 inhibitors

PCSK9 (proprotein convertase subtilisin/kexin 9) is a hepatically-
derived protein that regulates LDL-receptor expression. PCSK9 inhibi-
tion leads to an increase in LDL-receptor density on the liver surface,
resulting in reduced serum LDL-C levels. There are two FDA-approved
approaches: 1) human monoclonal antibodies; and 2) small interfering
(si) RNAs.

8.5. Monoclonal antibodies (2015)

The two currently available medications are alirocumab and evolo-
cumab. Alirocumab, given as 75 mg or 150 mg formulations every two
weeks, can lower LDL-C by 45–58 % when used in combination with
maximally tolerated statins. Evolocumab given 140 mg every 2 weeks
can lower LDL-C by an average of 64 % or given 420 mg every 4 weeks
can lower LDL-C by 58 %. Both medications have completed cardio-
vascular outcomes trials, the ODYSSEY Outcomes (alirocumab) and the
FOURIER (evolocumab) trials, both showed 15 % relative risk reduction
(1.5 % to 1.6 % absolute risk reduction) compared to placebo when
added to statin therapy with or without ezetimibe in higher risk patients
with pretreatment LDL-C above 70 mg/dL (alternative criteria included:
nonHDL-C above 100 mg/dL in FOURIER, or nonHDL-C and apoB above
100 and 80 mg/dL, respectively in ODYSSEY OUTCOMES). A mortality
benefit was noted in the ODYSSEY trial with hazard ratio, 0.71; 95 % CI,
0.56 to 0.90; Pinteraction=0.007. Side effects for the class are rare. Adverse
effects for evolocumab include headaches (11 %) and nasopharyngitis

Fig. 2. Therapeutic thresholds in primary and secondary prevention of ASCVD. Individualized approach to the reduction of the lipoprotein-driven risk of ASCVD
should be based on the: 1) preferred route of administration, 2) preferred frequency of administration, 3) medication-specific side effects, 4) clinical profile of the
patient, 5) LDL-lowering potential, 6) Lp(a)-lowering potential. **As of 2024, bempedoic acid is FDA-approved for primary prevention of ASCVD and FH with or
without maximally tolerated statin therapy. No data on safety and efficacy exists on combining monoclonal antibodies to PCSK9 and siRNA to PCSK9. Therefore, this
group does not recommend this combination at this time. Intensification of the lipid-lowering therapy and aggressive LDL-C lowering should be considered in in-
dividuals without a prior index event but severe coronary artery calcification, such CAC score ≥1000 [124] or left main coronary artery involvement [125] The
presence of any degree of coronary calcification should warrant at least a moderate potency statin.
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(4–12 %) and for alirocumab include injection side reactions (4–17 %)
and hypersensitivity reactions (9 %). PCSK9 inhibitors did not increase
the risk of new-onset diabetes, nor did they worsen glycemia [99].
Discontinuation rates of PCSK9 mAb are the same as that for placebo in
RCTs.

8.6. Small interfering RNAs (2021)

Inclisiran is a double stranded small interfering ribonucleic acid (si-
RNA) transported in lipid nanoparticle expressing GalNac (N-acetylga-
latcosamine). GalNac enables rapid selective hepatic uptake and clear-
ance of medicine from blood streamwithin 24 h. The single active strand
persists on the RNA-induced silencing complex (RISC) disabling PCSK9
mRNA transcription for more than 6 months, with durable LDL-C re-
ductions associated. It is indicated for lowering LDL-C in adults with
primary hyperlipidemia in the primary and secondary prevention set-
tings, in addition to diet and statin therapy. Inclisiran is particularly
useful in individuals who would benefit from less frequent dosing: 284
mg subcutaneous on day 1, day 90, and then every 6 months. Inclisiran
lowers LDL-C on average by 48–52 %. Adverse reactions reported by
patients treated with inclisiran include injection site reaction (8 %) and
antibody development (5 %). Other reported side effects included uri-
nary tract infections, diarrhea, and dyspnea. A patient-level, pooled
analysis of patients with heterozygous FH, ASCVD, or ASCVD risk
equivalent on maximally tolerated statin-therapy demonstrated a 26 %
reduction in the likelihood of non-adjudicated cardiovascular death,
cardiac arrest, non-fatal myocardial infarction, and fatal and non-fatal
stroke. In the pragmatic VICTORION-INITIATE clinical trial, addition
of inclisiran immediately upon failure to reach LDL-C < 70 mg/dL
despite receiving maximally tolerated statins resulted in significantly
higher proportion of individuals reaching LDL-C levels below 70 mg/dL
(82% vs. 22 %) and 55 mg/dL (72% vs. 9 %) with no significant increase
in the rates of reported serious adverse events, as compared to usual care
patients receiving treatment under community standards [100]. The
cardiovascular outcomes RCTs are ongoing; the estimated trial
completion for the ORION 4 is July 2026 (ClinicalTrials.gov Identifier:
NCT03705234) and for the VITORIAN-2P is October 2027
(NCT05030428). Inclisiran in addition to high-intensity statin, ezeti-
mibe, or apheresis did not reduce LDL-C levels in patients with homo-
zygous FH (the ORION-5 trial;, mean age, 43 years, 61 % women,
baseline LDL-C 294 mg/dL) [101].

8.7. Evinacumab (2021)

Evinacumab is a human monoclonal antibody which inhibits
angiopoietin like 3 (ANGPTL3) administered as a monthly intravenous
infusion. Circulating ANGPTL3 inhibits the TG-hydrolytic activity of
lipoprotein lipase (LPL), so ANGPTL3 inhibition enables VLDL delipi-
dation and subsequent clearance, which likely reduces downstream LDL
particle formation. In addition, in individuals with homozygous FH who
have very little or no LDL-receptor expression, evinacumab is shown to
reduce LDL-C through an LDL-receptor independent pathway. Thus, it is
indicated in patients who are 12 years or older with homozygous FH.
The mean reduction in LDL-C is 49 %− 52 %. Because of the potential for
fetal toxicity and hypersensitivity reactions, pregnancy testing is
required prior to starting this medication in female patients and a
warning to stop the drug if hypersensitivity reaction occurs. To date, no
drug-drug interactions have been identified. The phase 3 trial was
focused on the LDL-C changes from the baseline. No CV outcomes trials/
program has been initiated for evinacumab to date. Similar to other
monoclonal antibodies, some common adverse effects include naso-
pharyngitis (16 %) and influenza-like symptoms (7 %).

8.8. Lomitapide (2012)

Lomitapide inhibits microsomal triglyceride transfer protein (MTP),

which is a cellular protein needed for the assembly and secretion of
triglyceride-rich apolipoprotein B-containing lipoproteins, facilitating
transport of dietary and endogenous fat by the intestine and liver. It has
been FDA approved for patients with homozygous FH aged ≥18 years.
Lomitapide reduces LDL in a dose-dependent manner by 25–50 %. In
patients receiving lipoprotein apheresis, concomitant use of lomitapide
can reduce the frequency of the procedures. The most commonly re-
ported adverse events were mild-to-moderate in intensity gastrointes-
tinal symptoms, increased risk of hepatic steatosis, steatohepatitis and
liver cirrhosis. In the USA, lomitapide is available through a restricted
JUXTAPID REMS program [39]. Adherence to a low-fat diet (<20 % of
daily total energy from fat) and restriction of alcohol consumption can
significantly improve tolerability of the drug. Monitoring of liver func-
tion tests (alanine and aspartate aminotransferases, alkaline phospha-
tase, total bilirubin) before initiating treatment and prior to each
increase of dose is recommended. Referral to a hepatologist should be
considered if abnormal (≥3 upper limit of norm) ALT and AST testing
persists. In patients with end-stage renal disease receiving dialysis or
mild hepatic impairment (Child-Pugh A) daily dosing should not exceed
40 mg.

8.9. Lipoprotein apheresis

Six different lipoprotein apheresis systems are commercially avail-
able across the world, though only one is used in the U.S. [102]. The FDA
indications for the use of lipoprotein apheresis in the U.S. include: 1)
homozygous FH with LDL-C >=500mgdL, 2) heterozygous FH with
LDL-C >=300 mg/dL, 3) heterozygous FH with ASCVD with LDL-C
>=100 mg/dL, 4) clinical FH and established ASCVD with LDL-C ≥

100 mg/dL; Lp(a) ≥60 mg/dL (120 nmol/L); all on maximally tolerated
lipid-lowering treatment. This represents the only FDA-approved ther-
apeutic option for patients with elevated Lp(a), in the setting of clinical
FH and established ASCVD.
On average, greater than 60 % of atherogenic apoB-containing li-

poproteins are immediately reduced following a single procedure. The
higher the baseline lipid and lipoprotein levels and the greater the
quantity of treated plasma/blood, the greater the observed relative
reduction in apoB-containing lipoproteins. Lipoprotein apheresis results
in an average of 68 % total cholesterol lowering, 85 % LDL-C lowering,
70 % Lp(a) lowering, and 64 % TG lowering per session. Gradual in-
crease in the LDL-C and Lp(a) levels after lipoprotein apheresis session to
pre-treatment levels is expected within 2–4 weeks and 1–3 weeks,
respectively, depending on the duration of treatment. There is a non-
linear rebound of LDL-C between the apheresis sessions with a consis-
tent relationship between regular treatment sessions, resulting in a time-
averaged reduction of LDL cholesterol of around 48 % between apher-
esis intervals [103]. Simultaneous lipid-lowering therapy targeting LDL
and Lp(a) enhances the efficacy of lipoprotein apheresis and offers a
valuable therapeutic approach in patients with difficult to control LDL-C
levels. Treatment sessions acutely reduce the PCSK9 levels by the mean
of 51 % including the removal of LDL-bound PCSK9 and apoB-free
PCSK9.
Lipoprotein apheresis additionally modulates levels of pro-

inflammatory and anti-inflammatory factors, prothrombotic, fibrino-
lytic, and rheologic markers. It is associated with an increase in
expression of endothelium-derived nitric oxide and factors affecting
vascular permeability and a decrease in PCSK9. Lipoprotein apheresis
alters the proteomics of the lipoprotein particles, including reduction in
the concentration of the oxidized-LDL-C and Lp(a) particles, and
reduction of proinflammatory apoE4 bound to HDL particles and
remnant lipoproteins. Other effects attributed to lipoprotein apheresis
include improvement in blood rheology, endothelial function, micro-
vascular flow, myocardial perfusion, reduction in circulating inflam-
matory markers, however the exact mechanism for the significant
outcomes benefit noted in observational data has not fully been eluci-
dated [102].
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Lipoprotein apheresis can be successfully initiated as early as age 2 in
children with FH. Case-based evidence supports use of various types of
selective lipoprotein apheresis in pregnancy. The safety and efficacy of
combined long-term lipoprotein apheresis and lipid-lowering therapy
for the prevention of ASCVD has been reported since 1998 with multiple
observational studies showing substantial improvement in major car-
diovascular events on the order of 65–95 % reduction in MACE when
treated individuals were compared to their pre-treatment event rates or
standard of care [52,104-109]. In a sham-controlled randomized
controlled trial of individuals with elevated Lp(a), refractory angina,
lipoprotein apheresis improved myocardial perfusion, atheroma burden,
exercise capacity and symptoms [53]. The occurrence of adverse events
is low and is typical of other extracorporeal procedures. The treatment is
usually done on a biweekly basis and is dependent on the inter-apheresis
LDL-C levels and patient acceptance. The most common adverse event is
hypotension (<2 %). The incidence of all other adverse events, which
include flushing and/or blotching, chest pain, anemia, abdominal
discomfort, hemolysis, and arrhythmia, is less than 1 %. Difficulty
obtaining venous access may require either insertion of a port or surgical
creation of an arteriovenous fistula.

9. Investigational lipid-modifying therapies

9.1. Obicetrapib

Trials with obicetrapib offer promise for efficacy and safety. Obeci-
trapib reduces LDL-C by decreasing the transfer of HDL cholesteryl ester
into TG-rich lipoproteins and increased hepatic LDL-C clearance. In a
phase 2b ROSE trial obicetrapib showed a 40 % and 50 % reduction in
LDL-C levels and 24 % and 40 % reduction in ApoB levels at doses of 5
and 10 mg, respectively [110]. Dose-dependent reduction in Lp(a) of 55
% was reported. There are three ongoing phase 3 clinical trials,
including BROADWAY (NCT05142722) and BROOKLYN
(NCT05425745) in patients with heterozygous FH, and PREVAIL
(NCT05202509) in patients with a history of ASCVD, assessing cardio-
vascular outcomes with anticipated completion in 2026. Obicetrapib has
been studied in combination with high-intensity statins and ezetimibe
[111]. The most prevalent adverse events were gastrointestinal disor-
ders (5 %) and nervous system disorders (primarily headache) [110].
Myalgias have not been significantly increased with obicetrapib.

9.2. Lerodalcibep

Lerodalcibep is a third generation PCSK9 inhibitor, a novel small
recombinant fusion protein of PCSK9-binding domain and human serum
albumin. To date, the phase 3 program continues to enroll patients
across the spectrum of ASCVD risk. The LIBerate-HR (High Risk; mean
age 65 years, 47% female) trial demonstrated reduction in the LDL-C, Lp
(a), and apoB levels, of 56 %, 33 %, and 43 % using a monthly injection
of lerodalcibep in patients with established or at high risk for ASCVD on
stable statin therapy (publication in review) [112]. Among patients with
genetically confirmed hoFH (mean age 29 years; 55 % female), ler-
odalcibep reduced LDL-cholesterol levels by 9 % and evolocumab by 11
% after 24 weeks of treatment [113]. The LIBerate-HeFH trial showed an
average of 59 % LDL-C lowering at week 24 in patients (mean age 53
years, 52 % female) with heFH as compared to placebo [114]. There was
no difference in the incidence of adverse events related to glycemic
control. The LIBerate-OLE (Open-Label Extension) study reported effects
of continued treatment with subcutaneous lerodalcibep 300 mg beyond
24 weeks until week 48 in patients with heFH, 90 % of whom were on
background statins and 51 % on ezetimibe. The intention-to-treat
analysis showed a mean reduction of 49 % in LDL-C. ApoB and Lp(a)
were reduced by 35 % and 20 %, respectively. No significant safety
concerns were identified.

9.3. Macrocyclic Peptide (MK-0616)–PCSK9 Complex is an
investigational oral PCSK9 inhibitor

It was tested in the phase 2b trial showing a dose-dependent LDL-C
lowering effect up to 60 % with a 30 mg dose. The half-life of MK-0616
after single doses of 10, 35, 100, 200, and 300 mg on average ranges
from 35 to 130 h [115]. MK-0616 was shown to be generally
well-tolerated. The phase 3 program CORALreef was announced in 2023
and will focus on cardiovascular outcomes in those with 1) established
ASCVD or those at intermediate to high risk; 2) heterozygous FH; 3) high
ASCVD risk. Approximately 17,000 participants will be recruited across
the phase 3 program with an estimated primary completion date in
November 2029.

9.4. Gene editing and gene transfer targeting lipid metabolism

Gene editing aims to directly restore or disrupt genes of interest at
the DNA level. Somatic non-integration gene therapy can transfer copies
of normally functioning genes and coding DNA sequence into dysfunc-
tional cells to tailor treatment of monogenic diseases. Somatic gene-
editing therapy induces gene mutation in situ through gene disrup-
tion/deletion/insertion/replacement using endonuclease. Gene repair
applications are limited to the treatment of monogenic disorders, while
the potential applications of gene disruption are broader, including
common forms of dyslipidemias. Human fibroblast-derived using
pluripotent stem cells (iPSC) technology in homozygous FHwere treated
with CRISPR/SpCas9 nickase and a repair template aiming at restoring
normal LDLR structure [116]. The VERVE (VERVE-101, VERVE-102,
and VERVE-201) is an in vivo liver base DNA editing intervention tar-
geting the PCSK9 and ANGPTL3 genes. The heart-1 phase 1b clinical
trial used PCSK9 target in patients with heterozygous FH and established
ASCVD on oral standard-of-care therapy [117]. In this first-in-human
study of patients, a 39–48 % LDL-C lowering and 47–84 % reduction
in PCSK9 was observed. In the animal study, VERVE-101 lowered PSCK9
levels by 67 %− 83 % and LDL-C by 49 %− 69 %, depending on the dose
and sustained at one year [117]. Off-target effects secondary to CRISPR
(short for “clustered regularly interspaced short palindromic repeats”)
technology have not yet been observed. Further, in December 2023, the
FDA granted approval for the world’s first CRISPR–Cas9 gene editing
therapy in sickle cell disease [118].

10. Impact of system failures

Clinical behaviors can be affected by education, incentives and
nudges. Rising demand, process inefficiencies, and structural barriers
may result in delayed provider response to clinical guidelines. This
challenge can be addressed by the development of simple quality metrics
[119]. The Center for Medicare &Medicaid Services (CMS) changed the
lipid quality metric utilized by almost all health systems around the
country in 2015, after the 2013 ACC/AHA Cholesterol Guideline was
published and declared that evidence for dose titration and non-statin
therapy was lacking at time of publication. Thus, CMS incentivized cli-
nicians to prescribe statins, but did not offer any incentive for LDL-C goal
achievement. Shortly after the 2013 Guideline, clinical trials have been
published that support the “lower for longer” hypothesis but CMS has
not yet reverted incentives for lowering LDL-C back to pre-2015 ac-
counting. Nonetheless, based upon the evolving science, the updated
2018 AHA/ACC/Multisociety Guideline on the Management of Blood
Cholesterol (a.k.a. the 2018 cholesterol guidelines) [16] affirms this
relationship. Subsequent approval and recommendation for the use of
evinacumab, bempedoic acid, and inclisiran by the 2022 ACC Expert
Consensus Decision Pathway (ECDP) on the Role of Nonstatin Therapies
for LDL-Cholesterol Lowering in the Management of Atherosclerotic
Cardiovascular Disease Risk further suggests a role for ongoing man-
agement and prescription of non-statins to augment foundational care
with statins [21]. See Fig. 3 for timeline of events affecting incorporation
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of evidence for statins and non-statins. Supplemental Figure 1 provides
examples of promising novel targeted therapies, using various drug
delivery vehicles.

10.1. Implementation science and disparities of care in lipid management

Despite advanced therapies proven to be both safe and effective for
optimal lipid lowering, there remains a substantial gap in use in clinical
practice. Underserved populations experience even lower rates of
intensive LDL-C lowering compared to general populations [120], as do
women [121]. The obstacles to increased uptake are multi-factorial,
stemming from lack of physician awareness, patient reluctance and
nonadherence, prohibitive drug costs, complex approval processes, and
inadequate payor incentives [122]. Resumption of pre-2015 out-
come-focused LDL-C CMS metrics, rather than the current statin-based
process standard, could go a long way to return the focus on LDL-C
goal attainment for clinicians, promoting better care and outcomes for
all populations, especially the underserved. Other approaches to
improve adherence and access to care include universal provider edu-
cation in health systems when newer therapies come to the market and
electronic health record (EHR) based strategies that take advantage of
automated detection by electronic phenotyping algorithms with linkage
to best practice alerts, clinical decision support and decision aids [123].
Lastly, although patient assistance programs exist for those meeting
requirements, medication cost remains an obstacle for a number of pa-
tients who neither qualify for these programs nor can afford the medi-
cations. Despite these cost issues, the uptake of advanced therapies
remains limited even in those who are fully covered by insurance
highlighting the fact that solutions will need to be multi-faceted in
overcoming obstacles on the provider, patient and system level.

11. Conclusion

Multiple advanced treatments are currently available to address re-
sidual atherogenic lipoprotein risk beyond statin therapy. With every
approximately 40 mg/dL reduction in LDL-C level with statins and non-
statins, there is an average >20 % reduction in cardiovascular events
illustrating the urgency to attain lower LDL-C goals. Guideline-directed
care continues to support the role of statins as foundational, however,
the evidence strongly supports consideration of LDL-C lowering with
non-statins when statins alone are not adequate. An approach that tar-
gets residual risk due to LDL-C and other atherogenic particles, in
addition to baseline patient risk, will improve outcomes for all. Better
outcomes with higher adherence and patient satisfaction may also be
achieved with combination therapies for atherogenic particles that are

better tolerated and are more likely to achieve optimal lipoprotein
levels. Impacting the behavior of prescribers, patients, and health sys-
tems through education, recognition of patients not at goal and in-
centives to optimize outcomes, may enable this process.
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